A no-nonsense practical guide to geometry, providing concise summaries, clear model examples, and plenty of practice, making this workbook the ideal complement to class study or self-study, preparation for exams or a brush-up on rusty skills. About the Book Established as a successful practical workbook series with more than 20 titles in the language learning category, Practice Makes Perfect now provides the same clear, concise approach and extensive exercises to key fields within mathematics.The key to the Practice Makes Perfect series is the extensive exercises that provide learners with all the practice they need for mastery. Not focused on any particular test or exam, but complementary to most geometry curricula Deliberately all-encompassing approach: international perspective and balance between traditional and newer approaches. Large trim allows clear presentation of worked problems, exercises, and explained answers.Features No-nonsense approach: provides clear presentation of content. Over 500 exercises and answers covering all aspects of geometry Successful series: "Practice Makes Perfect" has sales of 1,000,000 copies in the language category - now applied to mathematics Workbook is not exam specific, yet it provides thorough coverage of the geometry skills required in most math tests.
Hit the geometry wall? Get up and running with this no-nonsense guide! Does the thought of geometry make you jittery? You're not alone. Fortunately, this down-to-earth guide helps you approach it from a new angle, making it easier than ever to conquer your fears and score your highest in geometry. From getting started with geometry basics to making friends with lines and angles, you'll be proving triangles congruent, calculating circumference, using formulas, and serving up pi in no time. Geometry is a subject full of mathematical richness and beauty. But it's a subject that bewilders many students because it's so unlike the math they've done before--it requires the use of deductive logic in formal proofs. If you're having a hard time wrapping your mind around what that even means, you've come to the right place! Inside, you'll find out how a proof's chain of logic works and even discover some secrets for getting past rough spots along the way. You don't have to be a math genius to grasp geometry, and this book helps you get un-stumped in a hurry! Find out how to decode complex geometry proofs Learn to reason deductively and inductively Make sense of angles, arcs, area, and more Improve your chances of scoring higher in your geometry class There's no reason to let your nerves get jangled over geometry--your understanding will take new shape with the help of Geometry For Dummies.
Beginning with art and architecture and culminating with science and mathematics itself, this book discusses geometric ideas and their many applications throughout history. These range from ancient to modern, concrete to abstract, and familiar to cutting edge. Each chapter is written by a leading expert or pioneer in their own field, and the book should be a valuable resource for students and teachers of geometry alike.
This book surveys the mathematical and computational properties of finite sets of points in the plane, covering recent breakthroughs on important problems in discrete geometry, and listing many open problems. It unifies these mathematical and computational views using forbidden configurations, which are patterns that cannot appear in sets with a given property, and explores the implications of this unified view. Written with minimal prerequisites and featuring plenty of figures, this engaging book will be of interest to undergraduate students and researchers in mathematics and computer science. Most topics are introduced with a related puzzle or brain-teaser. The topics range from abstract issues of collinearity, convexity, and general position to more applied areas including robust statistical estimation and network visualization, with connections to related areas of mathematics including number theory, graph theory, and the theory of permutation patterns. Pseudocode is included for many algorithms that compute properties of point sets.
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.